设m为实数,函数f(x)=2x2+(x-m)|x-m|,h(x)=f(x)x(x≠0)0(x=0).(1)若f(1)≥4,求m的取值范围;(2)当m>0时,求证h(x)在[m,+∞)上是单调递增函数;
题目
设m为实数,函数f(x)=2x
2+(x-m)|x-m|,
h(x)=.
(1)若f(1)≥4,求m的取值范围;
(2)当m>0时,求证h(x)在[m,+∞)上是单调递增函数;
(3)若h(x)对于一切x∈[1,2],不等式h(x)≥1恒成立,求实数m的取值范围.
答案
(1)f(1)=2+(1-m)|1-m|≥4
当m>1时,(1-m)(m-1)≥2,无解;
当m≤1时,(1-m)(1-m)≥2,解得m≤1-
.
所以m≤1-
.
(2)由于m>0,x≥m.
所以h(x)=3x+
-2m.
任取m≤x
1≤x
2,h(x
2)-h(x
1)=(x
2-x
1)(
)
x
2-x
1>0,3x
1x
2-m
2>3m
2-m
2>0,x
1x
2>0
所以h(x
2)-h(x
1)>0即:h(x)在[m,+∞)为单调递增函数.
(3)、①m<1时,x∈[1,2],f(x)=2x
2+(x-m)(x-m)=3x
2-2mx+m
2,
h(x)=
≥1恒成立∴f(x)≥x恒成立,
即:g(x)=3x
2-(2m+1)x+m
2≥0
由于y=g(x)的对称轴为x=
<1
故g(x)在[1,2]为单调递增函数,
故g(1)≥0∴m
2-2m+2≥0.
所以m<1.
②当1≤m≤2时,h(x)=
易证y=x-
+m在[1,m]为递增,
由②得y=3x+
-2m在[m,2]为递增,
所以,h(1)≥1,即0≤m≤2,
所以1≤m≤2.
③当m>2时,h(x)=x-
+2m(无解)
综上所述m≤2.
(1)令x=1代入后对m的值进行讨论即可.
(2)先写出函数h(x)的解析式,然后用增函数的定义法证明.
(2)转化为二次函数,从而根据二次函数的单调性解出实数m的范围.
利用导数研究函数的单调性;利用导数求闭区间上函数的最值.
本题主要考查函数的单调性证明和应用.属中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 在分数混合运算时,如何计算更方便,计算时该注意什么问题
- 人类的理想社会是什么?人类希望社会怎样才是梦寐以求的理想社会?
- 在漆黑的夜里,飞机怎么能安全飞行呢?原来是人们从蝙蝠身上得到了启示.你发现了什么?学着写一句
- 在十六字令三首中,作者描写山势的高耸,与作者表达革命豪情有什么关系?
- 某文具店有钢笔和毛笔共69枝,钢笔每枝7.5元,毛笔每枝18元.全部卖出后,毛笔比钢笔多卖120元.毛笔有多少枝?用方程解.
- 已知向量a=(4,5cosα),b=(3,-4tanα)
- 女神的英语单词是什么
- 往昔所造诸恶业,皆由无始贪嗔痴,从身语意之所生,一切我今皆忏悔.众生无边誓愿度,烦恼无尽誓愿断,法门无量誓愿学,佛道无上誓愿成!
- nm是什么单位?
- 0除于任何数都等于1?
热门考点