已知函数f(x)=lg[(s^x)-(t^x)],常数s>1>t>0,且不等式f(x)大于等于0的解集为[1,+无穷),则证明s=t+1
题目
已知函数f(x)=lg[(s^x)-(t^x)],常数s>1>t>0,且不等式f(x)大于等于0的解集为[1,+无穷),则证明s=t+1
答案
f(x)≥0的解集为[1,+无穷),
lg[(s^x)-(t^x)])≥0
即
(s^x)-(t^x)≥1
对于任意的x>=1恒成立
s>1>t>0
分析,
显然,当x增加时,s>1,s^x单增
当x增加时,0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点