已知a,b,c属于正实数,求证(a²b²+b²c²+c²a²)/(a+b+c)≥abc

已知a,b,c属于正实数,求证(a²b²+b²c²+c²a²)/(a+b+c)≥abc

题目
已知a,b,c属于正实数,求证(a²b²+b²c²+c²a²)/(a+b+c)≥abc
答案
要证(a²b²+b²c²+c²a²)/(a+b+c)≥abc
即证(a²b²+b²c²+c²a²)≥(a+b+c)abc=a²bc+ab²c+abc²
即证2(a²b²+b²c²+c²a²)≥2(a²bc+ab²c+abc²)
2(a²b²+b²c²+c²a²)=a²(b²+c²)+b²(a²+c²)+c²(a²+b²)
≥a²(2bc)+b²(2ac)+c²(2ab)
得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.