对于任意k∈[-1,1],函数f(x)=x2+(k-4)x-2k+4的值恒大于零,则x的取值范围是_.

对于任意k∈[-1,1],函数f(x)=x2+(k-4)x-2k+4的值恒大于零,则x的取值范围是_.

题目
对于任意k∈[-1,1],函数f(x)=x2+(k-4)x-2k+4的值恒大于零,则x的取值范围是______.
答案
∵任意k∈[-1,1],函数f(x)=x2+(k-4)x-2k+4>0,恒成立,
∴f(k)=k(x-2)+x2-4x+4>0为一次函数,
f(−1)>0
f(1)>0

∴-1(x-2)+x2-4x+4>0,
(x-2)+x2-4x+4>0,
解得x<1或x>3,
故答案为(-∞,1)∪(3,+∞).
由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,比较函数值的大小,求出最大值,从而求解.

利用导数求闭区间上函数的最值.

此题是一道常见的题型,把关于x的函数转化为关于k的函数,构造一次函数,因为一次函数是单调函数易于求解,最此类恒成立题要注意.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.