用微分求由方程y+xe^y=1确定的隐函数y=y(x)的微分dy

用微分求由方程y+xe^y=1确定的隐函数y=y(x)的微分dy

题目
用微分求由方程y+xe^y=1确定的隐函数y=y(x)的微分dy
答案
y + xe^y = 1 两端直接求微分:
dy + e^y * dx + x * e^y dy = 0
=> dy = - e^y dx / ( 1+ x * e^y)
将 x * e^y = 1 - y 代入上式,也可以简化为:
dy = [ e^y / (y-2) ] dx
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.