已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R,若函数F(x)=f(x)+g(x)在区间(0,3)上不单调,则k的取值范围为(  ) A.[-4,-2

已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R,若函数F(x)=f(x)+g(x)在区间(0,3)上不单调,则k的取值范围为(  ) A.[-4,-2

题目
已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R,若函数F(x)=f(x)+g(x)在区间(0,3)上不单调,则k的取值范围为(  )
A. [-4,-2)
B. (-3,-1]
C. (-5,-2]
D. (-5,-2)
答案
因F(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,
F′(x)=3x2+2(k-1)x+(k+5),
因F(x)在区间(0,3)上不单调,
所以F′(x)=0在(0,3)上有实数解,且无重根,
由F′(x)=0得k(2x+1)=-(3x2-2x+5),
∴k=-
3x2−2x+5
2x+1
=
3
4
[(2x+1)+
9
2x+1
10
3
],
令t=2x+1,有t∈(1,7),记h(t)=t+
9
t

则h(t)在(1,3]上单调递减,在[3,7)上单调递增,
所以有h(t)∈[6,10),于是(2x+1)+
9
2x+1
∈[6,10)
得k∈(-5,-2],而当k=-2时有F′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,
所以k∈(-5,-2);
故选:D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.