如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内. 求证:(1)∠PBA=∠PCQ=30°; (2)PA=PQ.
题目
如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.
求证:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.
答案
证明:(1)∵四边形ABCD是矩形.
∴∠ABC=∠BCD=90°.(1分)
∵△PBC和△QCD是等边三角形.
∴∠PBC=∠PCB=∠QCD=60°.(1分)
∴∠PBA=∠ABC-∠PBC=30°,(1分)
∠PCD=∠BCD-∠PCB=30°.
∴∠PCQ=∠QCD-∠PCD=30°.
∴∠PBA=∠PCQ=30°.(1分)
(2)∵AB=DC=QC,∠PBA=∠PCQ,PB=PC.(1分)
∴△PAB≌△PQC.(2分)
∴PA=PQ.(1分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点