求数列3/2,9/4,25/8,65/16,161/32的前n项和sn
题目
求数列3/2,9/4,25/8,65/16,161/32的前n项和sn
数列3/2,9/4,25/8,65/16,161/32的前n项和sn,
答案
第n项分母是2^n,分子是n(2^n)+1,所以第n相等于n+[1/(2^n)],求和只要分别秋等差和等比数列之和即可.等差数列,1+2+...+n=n(n+1)/2.等比数列:首项1/2,公比1/2,和为(1/2)*(1-(1/2)^n)/(1-1/2)=1-(1/2)^n
所以sn=n(n+1)/2+1-(1/2)^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点