如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°. (1)判断DC是否为⊙O的切线,并说明理由; (2)证明:△AOC≌△DBC.
题目
如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.
答案
(1) DC是⊙O的切线.理由如下:∵∠A=∠D=30°,∴AC=CD,∠ACD=120°.∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=90°,∴DC是⊙O的切线.(2)证明:连接BC,∵AB是直径,∴∠ACB=90°,∴∠BCD=120°-90°=30°=∠D...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点