已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
题目
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
答案
当n=1时,a1=S1=1
当n≥2时,
an=Sn-S(n-1)
=3n²-2n-3(n-1)²+2(n-1)
=6n-5
∵当n=1时,满足an=6n-5
又∵an-a(n-1)=6n-5-6(n-1)+5=6
∴数列{An}为首项为1,公差为6的等差数列
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点