已知f(x)=x^2+px+q,求证:{f(1)},{f(2)},{f(3)}中至少有一个不小于1/2.

已知f(x)=x^2+px+q,求证:{f(1)},{f(2)},{f(3)}中至少有一个不小于1/2.

题目
已知f(x)=x^2+px+q,求证:{f(1)},{f(2)},{f(3)}中至少有一个不小于1/2.
用反证法证明.
希望有具体过程与讲解,
注意:“{}”,代表“绝对值”
答案
这个应该算是反证吧
f(1)=p+q+1,f(2)=2p+q+4,f(3)=3p+q+9.
假设|f(1)|,|f(2)|,|f(3)|都小于1/2,则|f(1)-2f(2)+f(3)|≤|f(1)|+2|f(2)|+|f(3)|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.