如图,AB∥CD、AD∥CE,F、G分别是AC和FD的中点,过G的直线依次交AB、AD、CD、CE于点M、N、P、Q, 求证:MN+PQ=2PN.
题目
如图,AB∥CD、AD∥CE,F、G分别是AC和FD的中点,过G的直线依次交AB、AD、CD、CE于点M、N、P、Q,
求证:MN+PQ=2PN.
答案
证明:延长BA、EC,设交点为O,则四边形OADC为平行四边形,
∵F是AC的中点,
∴DF的延长线必过O点,且
=.
∵AB∥CD,
∴
=.
∵AD∥CE,
∴
=.
∴
+=
+=
.
又∵
=
=,
∴OQ=3DN.
∴CQ=OQ-OC=3DN-OC=3DN-AD,AN=AD-DN.
∴AN+CQ=2DN.
∴
+=
=2.
即MN+PQ=2PN.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点