无论a取什么实数,点P(a-1,2a-3)都在直线l上.Q(m,n)是直线l上的点,则(2m-n+3)2的值等于_.
题目
无论a取什么实数,点P(a-1,2a-3)都在直线l上.Q(m,n)是直线l上的点,则(2m-n+3)2的值等于______.
答案
∵令a=0,则P(-1,-3);再令a=1,则P(0,-1),由于a不论为何值此点均在直线l上,
∴设此直线的解析式为y=kx+b(k≠0),
∴
,解得
,
∴此直线的解析式为:y=2x-1,
∵Q(m,n)是直线l上的点,
∴2m-1=n,即2m-n=1,
∴原式=(1+3)
2=16.
故答案为:16.
先令a=0,则P(-1,-3);再令a=1,则P(0,-1),由于a不论为何值此点均在直线l上,设此直线的解析式为y=kx+b(k≠0),把两点代入即可得出其解析式,再把Q(m,n)代入即可得出2m-n的值,进而可得出结论.
一次函数图象上点的坐标特征.
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点