数学证明题:当n为正整数时,n^3-n的值必是6的倍数.证明.

数学证明题:当n为正整数时,n^3-n的值必是6的倍数.证明.

题目
数学证明题:当n为正整数时,n^3-n的值必是6的倍数.证明.
答案
数学归纳法
(1)当n=1时 1^3-1=0 能被6整除
当n=2时 2^3-2=6 能被6整除
(2)假设当n=k时(k为正整数) k^3-k能被6整除
则当n=k+1时 (k+1)^3-(k+1)=(k+1)[(k+1)^2-1]=(k+1)(k+2)k
k(k+1)(k+2)为连续三个正整数的乘积
连续三个正整数中必有一个3的倍数 至少有一个为偶数
所以k(k+1)(k+2)中有2和3两个因子 一定能被6整数
综合(1)(2)可知 对于任意正整数n^3-n必是6的倍数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.