证明连续型随机变量 X 的特征函数φ(u)为实函数的充要条件是:它的密度函数地f(x)是对称的,即f(x)=f(-x).
题目
证明连续型随机变量 X 的特征函数φ(u)为实函数的充要条件是:它的密度函数地f(x)是对称的,即f(x)=f(-x).
答案
φ(u)=∫(-∞→+∞)e^(iux)f(x)dx=∫(-∞→+∞)[cos(ux)+isin(ux)]f(x)dx=∫(-∞→+∞)cos(ux)f(x)dx+i∫(-∞→+∞)sin(ux)f(x)dx①;②充分性:当f(x)=f(-x)时,-sin[u(-x)]f(-x)=sin(ux)f(x),所以sin(ux)f(x)为x的奇...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点