已知数列an的通项公式为an=(n+2)(7/8)n则当an取得最大值
题目
已知数列an的通项公式为an=(n+2)(7/8)n则当an取得最大值
要使an取得最大值,只要an>a(n+1)且an>a(n-1)即可
即:(n+2)(7/8)^n>(n+3)(7/8)^(n+1)
(n+2)(7/8)^n>(n+1)(7/8)^(n-1)
化简得:8(n+2)>7(n+3)
7((n+2)>8(n+1)
解得:5(n+1)(7/8)^(n-1)
化简得:8(n+2)>7(n+3)
7((n+2)>8(n+1)
如何算的
答案
不就是约分吗?(n+2)(7/8)^n>(n+3)(7/8)^(n+1)左右同时除以(7/8)^n,n+2>7/8(n+3),又去分母两边乘以8 的8(n+2)>7(n+3),下面那个是一样的道理
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点