用反证法证明在一个三角形中至少有两个锐角

用反证法证明在一个三角形中至少有两个锐角

题目
用反证法证明在一个三角形中至少有两个锐角
答案
证明
假设三角形三个内角没有锐角 则三个角都大于等于90度
三个内角和大于等于270度 与三角形内角和180度矛盾 不成立
假设三角形三个内角只有一个锐角 则另外两个角都大于等于90度
另外两个角和大于等于180度 三角形三个内角和为180度
则这个仅有的锐角度数小于等于0度矛盾 不成立
则三角形中至少有两个锐角
希望能帮你:)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.