设函数f(x)=√x^+1-ax,当a属于【1,正无穷)时,证明函数f(x)在区间【0,正无穷)上是单调减函数
题目
设函数f(x)=√x^+1-ax,当a属于【1,正无穷)时,证明函数f(x)在区间【0,正无穷)上是单调减函数
注意ax不在根号里面,根号里面的代数式是x^+1
答案
证明:设0≤x √x^2 +√y^2 =x+y
∴ (x+y) / [√(x^+1) +√(y^+1)]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点