已知公差大于零的等差数列{an},前n项和为Sn.且满足a3a4=117,a2+a5=22. (Ⅰ)求数列an的通项公式; (2)若bn=Snn-1/2,求f(n)=bn(n+36)bn+1(n∈N*

已知公差大于零的等差数列{an},前n项和为Sn.且满足a3a4=117,a2+a5=22. (Ⅰ)求数列an的通项公式; (2)若bn=Snn-1/2,求f(n)=bn(n+36)bn+1(n∈N*

题目
已知公差大于零的等差数列{an},前n项和为Sn.且满足a3a4=117,a2+a5=22.
(Ⅰ)求数列an的通项公式;
(2)若bn=
Sn
n-
1
2
,求f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.
答案
(Ⅰ)因为{an}是等差数列,所以a3+a4=a2+a5=22又a3•a4=117
所以a3,a4是方程x2-22x+117=0的两根.又d>0,所以a3<a4
所a3=9,a4=13,d=4,故a1=1,an=4n-3.
(Ⅱ)由(Ⅰ)可得Sn=
n(1+4n-3)
2
=2n2-n,故bn=
2n2-n
n-
1
2
=2n,
所以f(n)=
bn
(n+36)bn+1
=
n
n2+37n+36
=
1
n+
36
n
+37
1
2
36
+37
=
1
49

当且仅当n=
36
n
,即n=6时,f(n)取得最大值
1
49
(Ⅰ)由等差数列的性质可得a3,a4的和与积,可解a3,a4的值,进而可求通项;
(Ⅱ)由(Ⅰ)可求Sn,进而可得bn和f(n),下面由基本不等式可得最值.

等差数列的通项公式;基本不等式.

本题为等差等比数列的综合应用,涉及基本不等式求最值,属基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.