已知函数f(x)的定义域为(-∞,0)∪(0,+∞),f(x)是奇函数,且当x>0时,f(x)=x2-x+a,若函数g(x)=f(x)-x的零点恰有两个,则实数a的取值范围是(  ) A.a<0 B.

已知函数f(x)的定义域为(-∞,0)∪(0,+∞),f(x)是奇函数,且当x>0时,f(x)=x2-x+a,若函数g(x)=f(x)-x的零点恰有两个,则实数a的取值范围是(  ) A.a<0 B.

题目
已知函数f(x)的定义域为(-∞,0)∪(0,+∞),f(x)是奇函数,且当x>0时,f(x)=x2-x+a,若函数g(x)=f(x)-x的零点恰有两个,则实数a的取值范围是(  )
A. a<0
B. a≤0
C. a≤1
D. a≤0或a=1
答案
因为f(x)是奇函数,所以g(x)=f(x)-x也是奇函数,
所以要使函数g(x)=f(x)-x的零点恰有两个,
则只需要当x>0时,函数g(x)=f(x)-x的零点恰有一个即可.
由g(x)=f(x)-x=0得,g(x)=x2-x+a-x=x2-2x+a=0,
若△=0,即4-4a=0,解得a=1.
若△>0,要使当x>0时,函数g(x)只有一个零点,则g(0)=a≤0,
所以此时
△=4−4a>0
a≤0
,解得a≤0.
综上a≤0或a=1.
故选D.
要使函数g(x)=f(x)-x的零点恰有两个,则根据函数是奇函数,则只需要当x>0时,函数g(x)=f(x)-x的零点恰有一个即可.

函数的零点.

本题主要考查函数零点的应用,利用二次函数的图象和性质是解决本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.