已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点F,连接BD、BE. (1)仔细观察图形并写出四个不同的正确结论:①_,②_,③_,④_(不添加其它字母
题目
已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点
F,连接BD、BE.
(1)仔细观察图形并写出四个不同的正确结论:①______,②______,③______,④______(不添加其它字母和辅助线,不必证明);
(2)∠A=30°,CD=
,求⊙O的半径r.
答案
(1)BC⊥AB,AD⊥BD,DF=FE,BD=BE,△BDF≌△BEF,△BDF∽△BAD,∠BDF=∠BEF,∠A=∠E,DE∥BC等;
(2)∵AB是⊙O的直径,
∴∠ADB=90°,
又∵∠A=30°,
∴BD=ABsinA=ABsin30°=
AB=r;
又∵BC是⊙O的切线,
∴∠CBA=90°,
∴∠C=60°;
在Rt△BCD中,
CD=
,
∴
==tan60°,
∴r=2.
(1)由BC是⊙O的切线,DF⊥AB,得∠AFD=∠CBA=90°;根据DE∥BC和垂径定理知,弧BD=弧BE,DF=FE,BD=BE,由等边对等角得∠E=∠EDB;再由圆周角定理得∠A=∠E,可证△BDF≌△BEF,△BDF∽△BAD;
(2)当∠A=30°时BD=r,∠C=60°,再根据Rt△BCD中tan60°可求得r=2.
切线的性质;直角三角形全等的判定;圆周角定理.
本题利用了切线的性质,垂径定理,圆周角定理,直角三角形的性质,锐角三角函数的概念求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点