已知α是锐角,且tanα,cotα是关于x的一元二次方程x2-kx+k2-8=0的两个实数根,求k的值.
题目
已知α是锐角,且tanα,cotα是关于x的一元二次方程x2-kx+k2-8=0的两个实数根,求k的值.
答案
证明:∵α是锐角,
∴tanα•cotα=1.
∴k2-8=tanα•cotα=1.
∴k1=3,k2=-3.
又∵tanα>0,cotα>0.
∴tanα+cotα=k>0.
∴k=3.
当k=3时,原方程为:x2-3x+1=0,
△=9-4=5>0,
∴k=3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点