已知向量op1=(cosA,sinA).op2=(1+sinA,1_cosA),o为原点,A属于R,则向量p1p2的长度的最大值是

已知向量op1=(cosA,sinA).op2=(1+sinA,1_cosA),o为原点,A属于R,则向量p1p2的长度的最大值是

题目
已知向量op1=(cosA,sinA).op2=(1+sinA,1_cosA),o为原点,A属于R,则向量p1p2的长度的最大值是
答案
∵向量OP1=(cosA,sinA)、向量OP2=(1+sinA,1-cosA),
∴向量P1P2=向量OP2-向量OP1=(1+sinA-cosA,1-cosA-sinA),
∴|向量P1P2|
=√[(1+sinA-cosA)^2+(1-cosA-sinA)^2]
=√[(1-cosA)^2+(sinA)^2]
=√[1-2cosA+(cosA)^2+(sinA)^2]
=√(2-2cosA).
∴当cosA=-1时,|向量P1P2|有最大值为√(2+2)=2.
即:向量P1P2的长度的最大值为 2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.