如图,已知△ABC中,AB=AC=16厘米,BC=10厘米,点D为AB的中点. (1)如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速
题目
如图,已知△ABC中,AB=AC=16厘米,BC=10厘米,点D为AB的中点.
(1)如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
答案
(1)∵AB=AC=16厘米,点D为AB的中点,
∴BD=8厘米,∠B=∠C,
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由如下:
根据题意得:经过1秒时,BP=CQ=2厘米,
所以CP=10厘米-2厘米=8厘米,
即CP=BD=8厘米,
在△DBP和△PCQ中
∴△DBP≌△PCQ(SAS),
即若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等;
②设当点Q的运动速度为a厘米/秒时,时间是t秒,能够使△BPD与△CQP全等,
∵点Q的运动速度与点P的运动速度不相等,
∴BP和CQ不是对应边,
即BD=CQ,BP=CP,
即2t=10-2t,
解得:t=2,
∵BD=CQ,
∴8=2a,
解得:a=4,
即当点Q的运动速度为4厘米/秒时,时间是t秒,能够使△BPD与△CQP全等;
(2)设经过t秒时,P、Q第一次相遇,
∵P的速度是2厘米/秒,Q上午速度是4厘米/秒,
∴16+16+2t=4t,
解得:t=16,
此时Q走了4×16=64(厘米),
∵64-16-16-10-16=12,
即经过16秒后点P与点Q第一次在△ABC的边AB上相遇.
(1)①求出BD,求出CP,根据全等三角形的判定推出即可;
②根据全等求出时间t,再根据CQ=BD求出Q的速度即可;
(2)求出Q的运动路程,根据三角形ABC三边长度,即可得出答案.
全等三角形的判定;等腰三角形的性质.
本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,但是有一定的难度.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- high five 什么意思?
- 已知函数f(x)在R上可导,且满足f’(2)=3 .设函数F(x)=f(3x-1),则F’(1)=--------
- 写一句对飞行英雄的赞美词
- 如果二次函数的二次项系数为1,图象开口向上,且关于直线x=1对称,并过点(0,0),求二次函数的解析式.
- 要使多项式x^2-mxy+7y^2+xy-x+1中不含xy项,m=( )
- 已知x³+2x²=x-1,求式子3x³+6x²-3x+2的值
- 一面面鲜艳的红旗,在和暖的春风中迎风飘扬.修改病句.谢谢回答!
- 一条路,第一天修了150米,第二天比第一天多修了20米,如果再修这条路的7分之1就完成了一半,这条路全长多少
- 在正方形ABCD中E为AD的中点,点F在CD上且DF=1/4DC试判断BE与EF的关系,并说明理由
- 强强明明洋洋三人中强强最大 强强比明明大一岁 明明比洋洋大一岁 已知他们三个岁数相乘是504 他们各几岁