用行列式性质证明 空间内任意向量n1 n2 ,n1*n2=(-n2)*n1

用行列式性质证明 空间内任意向量n1 n2 ,n1*n2=(-n2)*n1

题目
用行列式性质证明 空间内任意向量n1 n2 ,n1*n2=(-n2)*n1
我想知道怎么证明 完全没有思路
答案
这里n1 * n2应该是叉乘,且只能是3维向量,任何其他维的向量都没有叉乘的定义
向量n1 * n2等于下列矩阵的行列式
i,j,k
n11,n12,n13
n21,n22,n23
其中n11,n12,n13是n1的坐标,n21,n22,n23是n2的坐标
显然n2 * n1等于交换上述矩阵2,3行后再求行列式
根据行列式性质,交换两行行列式符号相反
得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.