线性代数 证明行列式为0,用性质证明

线性代数 证明行列式为0,用性质证明

题目
线性代数 证明行列式为0,用性质证明
线性代数
0 a12 a13 a14 a15;
-a12 0 a23 a24 a25;
-a13 -a23 0 a34 a35; = 0
-a14 -a24 -a34 0 a45;
-a15 -a25 -a35 -a45 0
答案
记原行列式为D,转置后行列式的值不变.所以D=
0 -a12 -a13 -a14 -a15;
a12 0 -a23 -a24 -a25;
a13 a23 0 -a34 -a35;
a14 a24 a34 0 -a45;
a15 -25 a35 a45 0.
每一行提取公因子-1后,剩下的行列式与原行列式一样,所以
D=(-1)*(-1)*(-1)*(-1)*(-1)*D=-D,
所以D=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.