如图,D是四边形AEBC内一点,连接AD、BD,已知CA=CB,DA=DB,EA=EB. (1)C、D、E三点在一条直线上吗?为什么? (2)如果AB=24,AD=13,CA=20,那么CD的长是多少

如图,D是四边形AEBC内一点,连接AD、BD,已知CA=CB,DA=DB,EA=EB. (1)C、D、E三点在一条直线上吗?为什么? (2)如果AB=24,AD=13,CA=20,那么CD的长是多少

题目
如图,D是四边形AEBC内一点,连接AD、BD,已知CA=CB,DA=DB,EA=EB.

(1)C、D、E三点在一条直线上吗?为什么?
(2)如果AB=24,AD=13,CA=20,那么CD的长是多少?
答案
(1)C、D、E三点在一条直线上.
理由:连结CD.ED,
在△ADC和△BDC中
AC=BC
AD=BD
CD=CD

∴△ADC≌△BDC(SSS),
∴∠ADC=∠BDC.∠ACD=∠BCD.
在△ADE和△BDE中
AD=BD
AE=BE
ED=ED

∴△ADE≌△BDE(SSS),
∴∠ADE=∠BDE.
∵∠ADC+∠BDC+∠ADE+∠BDE=360°,
∴2∠ADC+2∠ADE=360°,
∴∠ADC+∠ADE=180°,
∴C、D、E三点在一条直线上;
(2)连结AB,
∵AC=BC,∠ACD=∠BCD,
∴AF=BF=
1
2
AB,CF⊥AB.
∵AB=24,
∴AF=12.
∵AD=13,CA=20,
∴在Rt△ADF和△AFC中,由勾股定理,得
FD=5,FC=16,
∴CD=16-5=11.
答:CD的长是11.
(1)连结CD.ED,通过证明△ADC≌△BDC,△ADE≌△BDE就可以得出结论;
(2)连结AB,就可以得出AE=BE,CE⊥AB,由勾股定理就可以求出CD的值.

全等三角形的判定与性质.

本题考查了等腰三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.