若实数a²+b²=1,b²+c²=2,c²+a²=3,则ab+bc+ca最小值为

若实数a²+b²=1,b²+c²=2,c²+a²=3,则ab+bc+ca最小值为

题目
若实数a²+b²=1,b²+c²=2,c²+a²=3,则ab+bc+ca最小值为
答案
由代数式
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
可得
ab+bc+ac=(a+b+c)^2-a^2-b^2-c^2
根据给我们的三个条件,把三个条件相加之后除以2,可得a^2+b^2+c^2=3
所以ab+bc+ac=(a+b+c)^2-3
最小值就是-3了.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.