∫x²/(1+e^x)dx 积分上下限为-1到1

∫x²/(1+e^x)dx 积分上下限为-1到1

题目
∫x²/(1+e^x)dx 积分上下限为-1到1
答案
P=∫(-1,1)x²/(1+e^x)dx (1)
令x=-t,积分限变为(1,-1),dx=-dt
P=∫(1,-1)t²/(1+e^(-t))d(-t)
=∫(-1,1)t²e^t/(1+e^t)dt
=∫(-1,1)x²e^x/(1+e^x)dx (2)
(1)+(2)得
2P=∫(-1,1)x²(1+e^x)/(1+e^x)dx
=∫(-1,1)x²dx=2∫(0,1)x²dx=2/3
所以P=1/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.