在三角形ABC中,角A,B,C所对的边分别为a,b,c,且sin^2(A/2)=(c-b)/2c.1.判断三角形ABC的形状,
题目
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且sin^2(A/2)=(c-b)/2c.1.判断三角形ABC的形状,
并加以证明; 2.当c=1时,求三角形面积的最大值.
答案
1.
sin^2(A/2)=(1-cosA)/2
(c-b)/2c=(1-b/c)/2
所以cosA=b/c即ABC为直角三角形,C为直角
2.
面积=a*b/2
a*a+b*b=c*c=1
由均值不等式面积
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点