定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1/2)=0,则满足f(log1/4x)<0的集合为 _ .

定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1/2)=0,则满足f(log1/4x)<0的集合为 _ .

题目
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(
1
2
答案
∵定义在R上的偶函数f(x)在[0,+∞)上单调递减,
∴偶函数f(x)在(-∞,0]上单调递增,
又∵f(
1
2
)=0,
∴f(-
1
2
)=0,
若f(log
1
4
x
)<0
log
1
4
x
-
1
2
,或log
1
4
x
1
2

解得x>2,或0<x<
1
2

故答案为:(0,
1
2
)∪(2,+∞)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.