已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M. (1)求证:AB=CD; (2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量
题目
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别
与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
答案
(1)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=12∠BAC,∵D与A关于E对称,∴E为AD中点,∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点