将完全相同的3个球随机地放入1,2,3号盒子中(每盒放球数不限),求: (1)3个球放入同一个盒子的概率; (2)3个盒子中都有球的概率; (3)至少有一个盒子没球的概率; (4)恰有
题目
将完全相同的3个球随机地放入1,2,3号盒子中(每盒放球数不限),求:
(1)3个球放入同一个盒子的概率;
(2)3个盒子中都有球的概率;
(3)至少有一个盒子没球的概率;
(4)恰有一个盒子没有球的概率.
答案
由分步乘法原理可知,将完全相同的3个球随机地放入1,2,3号盒子中,共有3
3=27种放法,每种放法是等可能的.
(1)记“3个球放入同一个盒子的概率”为事件A.
3个球放入同一个盒子的放法有3种:3个球放入1号盒子,或2号盒子,或3号盒子.
故
P(A)==.
(2)记“3个球放入3个盒子,每个盒子中都有球”为事件B.
3个球放入3个盒子,每个盒子中都有球,等价于每个盒子只放1个球,有
A | 3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
|