定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则(  ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2)

定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则(  ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2)

题目
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则(  )
A. f(3)<f(
2
)<f(2)

B. f(2)<f(3)<f(
2
)

C. f(3)<f(2)<f(
2
)

D. f(
2
)<f(2)<f(3)
答案
因为f(x+1)=-f(x),所以f(x+2)=-f(x+1)=-[-f(x)]=f(x).所以f(x)是以2为周期的函数.又f(x)为偶函数,且在[-1,0]上递增,所以f(x)在[0,1]上递减,又2为周期,所以f(x)在[1,2]上递增,在[2,3...
由f(x+1)=-f(x),可推出其周期为2;由偶函数在关于原点对称的区间上单调性相反及周期为2可得f(x)在[1,2]、[2,3]上的单调性,
根据单调性及对称性即可作出判断.

奇偶性与单调性的综合.

本题考查函数的奇偶性、单调性、周期性及其应用,考查学生运用所学知识灵活解决问题的能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.