n阶矩阵A既是正交矩阵又是正定矩阵 证明A是单位矩阵

n阶矩阵A既是正交矩阵又是正定矩阵 证明A是单位矩阵

题目
n阶矩阵A既是正交矩阵又是正定矩阵 证明A是单位矩阵
答案
楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^(-1)=A'=(C'EC)'=C'EC=A,故A为一对角矩阵”,还要加上:“由于A是正交矩阵,故|A|=1,因此A是单位矩阵”!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.