求与圆(x-3)2+y2=1及(x+3)2+y2=9都外切的动圆圆心的轨迹方程.

求与圆(x-3)2+y2=1及(x+3)2+y2=9都外切的动圆圆心的轨迹方程.

题目
求与圆(x-3)2+y2=1及(x+3)2+y2=9都外切的动圆圆心的轨迹方程.
答案
设动圆的圆心为P,半径为r,
而圆(x+3)2+y2=9的圆心为M1(-3,0),半径为3;
圆(x-3)2+y2=1的圆心为M2(3,0),半径为1.
依题意得|PM1|=3+r,|PM2|=1+r,
则|PM1|-|PM2|=(3+r)-(1+r)=2<|M1M2|,
所以点P的轨迹是双曲线的右支.
且:a=1,c=3,b2=8
其方程是:
x2
y2
8
=1(x>0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.