已知等比数列{an}的前n项和为Sn,a4=2a3,S2=6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn.

已知等比数列{an}的前n项和为Sn,a4=2a3,S2=6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn.

题目
已知等比数列{an}的前n项和为Sn,a4=2a3,S2=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+log2an,求数列{bn}的前n项和Tn
答案
(Ⅰ)设等比数列{an}的公比为q,
a4=2a3
S2=6
,得
a1q3=2a1q2
a1+a1q=6
…(2分)
解得
q=2
a1=2
…(4分)
所以an=a1qn-1=2n.…(6分)
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,…(8分)
所以Tn=(21+1)+(22+2)+…+(2n+n)
=(21+22+…+2n)+(1+2+…+n)…(9分)
=
2(1-2n)
1-2
+
n(n+1)
2

=2n+1+
n(n+1)
2
-2
.…(12分)
(Ⅰ)利用等比数列{an}的通项公式和前n项和公式由已知条件求出首项和公比,由此能求出数列{an}的通项公式.
(Ⅱ)bn=an+log2an=2n+log22n=2n+n,由此利用分组求和法能求出数列{bn}的前n项和Tn

数列的求和.

本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想,注意分组求和法的合理运用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.