连续性随机变量X的概率密度函数为 f(x)=ax2+bx+c 0
题目
连续性随机变量X的概率密度函数为 f(x)=ax2+bx+c 0
答案
这题变相考你定积分而已.
EX = 定积分 (x从0到1)(ax^2 + bx + c)x dx
= ax^4/4 + bx^3/3 + cx^2/2 | 0到1
= a/4 + b/3 + c/2 = 0.5, (1)
EX^2 = 定积分 (x从0到1) (ax^2 + bx + c)x^2 dx
= ax^5/5 + bx^4/4 + cx^3/3 | 0到1
= a/5 + b/4 + c/3 ,
于是DX = (a/5 + b/4 + c/3) - 0.25 = 0.15,于是
a/5 + b/4 + c/3 = 0.4, (2)
最后一个条件就是概率密度本身的积分要等于1:
1 = 定积分 (x从0到1) ax^2 + bx + c dx
= ax^3/3 + bx^2/2 + cx | 0到1
= a/3 + b/2 + c , (3)
联立(1),(2),(3),可以解出:
a = 12, b = -12, c = 3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点