已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1

已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1

题目
已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1
②必要性
f'(x)=1-a x =x-a x ,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
在上面证明必要性的过程中,“∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾”是什么意思?为什么a≠1时,有f(a)<f(1)?
答案
当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
由导数知f(a)为最小值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.