怎样证明根号2+1不是有理数

怎样证明根号2+1不是有理数

题目
怎样证明根号2+1不是有理数
答案
高数能解决这个问题;
这题可以用反证法来证明,证明根号2不是有理数,也就是要证明根号2是无理数.
证明:假设根号2是有理数,设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P
所以 Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方得:2*n平方=P平方,由于左边是2的倍数,故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,即P、Q有公因数2,这与P、Q互质相矛盾.所以根号2不是有理数,是无理数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.