若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是_.
题目
若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.
答案
当a=0时,方程是一元一次方程,有实数根,
当a≠0时,方程是一元二次方程,
若关于x的方程ax2+2(a+2)x+a=0有实数解,
则△=[2(a+2)]2-4a•a≥0,
解得:a≥-1.
故答案为:a≥-1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点