求极限lim[√(2x+1)-3]/√x -2,x->4

求极限lim[√(2x+1)-3]/√x -2,x->4

题目
求极限lim[√(2x+1)-3]/√x -2,x->4
答案
答案是4/3
由于分子和分母都有导致分式变为0的因子,所以分子和分母要分别有理化,消除根号
lim[x→4] [√(2x+1)-3]/(√x-2)
=lim[x→4] {[√(2x+1)-3][√(2x+1)+3](√x+2)}/{(√x-2)(√x+2)[√(2x+1)+3]},分子有3项,分母有3项,这里乘以一项再除以一项,别忘了只乘而没有除
=lim[x→4] [(2x+1-9)(√x+2)]/{(x-4)[√(2x+1)+3]}
=lim[x→4] [2(x-4)(√x+2)]/{(x-4)[√(2x+1)+3]}
=2lim[x→4] (√x+2)/[√(2x+1)+3]
=2·(√4+2)/[√(2·4+1)+3]
=2·4/6
=4/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.