求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明)
题目
求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明)
答案
已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,
求证:DE=DF.
证明:连接AD,
∵AB=AC,D是BC中点,
∴AD为∠BAC的平分线(三线合一的性质),
又∵DE⊥AB,DF⊥AC,
∴DE=DF(角平分线上的点到角的两边相等).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点