当x不等于0时,f(x)=e^(-1/x^2),当x=0时,x=0,证明f(x)的导数在点x=0处连续.
题目
当x不等于0时,f(x)=e^(-1/x^2),当x=0时,x=0,证明f(x)的导数在点x=0处连续.
答案
在x=0处
f(x)的左极限=0 因为x从左边趋近于0时,-1/x^2趋近于负无穷,所以f(x)趋近于0
f(x)的右极限=0 因为x从右边趋近于0时,-1/x^2趋近于负无穷,剩下同理
所以f(x)左极限=f(x)右极限=0
所以f(x)在x=0处极限为0
所以limf(x)x趋近于0=f(0)=0
所以连续
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点