已知an是等比数列,a2=2,a5=1/4,则a1a2+a2a3+……+ana(n+1)= 为什么 ana(n+1)/a(n-1)*an=q^2?
题目
已知an是等比数列,a2=2,a5=1/4,则a1a2+a2a3+……+ana(n+1)= 为什么 ana(n+1)/a(n-1)*an=q^2?
答案
兄台,你应该多看看等比数列的定义和公式a5/a2=q^3=1/8所以q=1/2 (由a2=2,q=1/2,可以求出a1=4)设bn=ana(n+1)bn=ana(n+1)=a1q^(n-1)*a1q^n=(1/2)^(2n-5)b(n-1)=ana(n-1)=(1/2)^(2n-7)ana(n+1)/ana(n-1)=(1/2)^2=q^2设T...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点