若函数f(x)=(a-1)^2-2sin^2x-2cosx(0≤x≤π/2)的最小值是-2,求函数a的值,并求出此时f(x)最大值

若函数f(x)=(a-1)^2-2sin^2x-2cosx(0≤x≤π/2)的最小值是-2,求函数a的值,并求出此时f(x)最大值

题目
若函数f(x)=(a-1)^2-2sin^2x-2cosx(0≤x≤π/2)的最小值是-2,求函数a的值,并求出此时f(x)最大值
答案
f(x)=(a-1)^2-2sin^2x-2cosx=(a-1)^2-2(1-cos^2x)-2cosx=(a-1)^2-2+2cos^2x-2cosx=2(cosx-1/2)^2-5/2+(a-1)^2;由于0≤x≤π/2,则,0≤cosx≤1,则,cosx=1/2时,y有最小值=0-5/2+(a-1)^2=-2;则,(a-1^2)=1/...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.