设函数f(x)(x∈R)是奇函数,g(x)(x∈R)是偶函数,且f(x)-g(x)=1-x2-x3,求g(x)
题目
设函数f(x)(x∈R)是奇函数,g(x)(x∈R)是偶函数,且f(x)-g(x)=1-x2-x3,求g(x)
求细节,
答案
答案是g(x)= x²-1属于偶函数
f(x)=-x3 属于奇函数
解题思路是:可以直接从原始1-x2-x3中构造出一个奇函数和一个偶函数偶函数*(-1)就可以求出g(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点