函数y=cos2ωx-sin2ωx(ω>0)的最小正周期是π,则函数f(x)=2sin(ωx+π4)的一个单调递增区间是(  ) A.[-π2,π2] B.[-5π4,9π4] C.[-π4,3π4]

函数y=cos2ωx-sin2ωx(ω>0)的最小正周期是π,则函数f(x)=2sin(ωx+π4)的一个单调递增区间是(  ) A.[-π2,π2] B.[-5π4,9π4] C.[-π4,3π4]

题目
函数y=cos2ωx-sin2ωx(ω>0)的最小正周期是π,则函数f(x)=2sin(ωx+
π
4
答案
因为:y=cos2ωx-sin2ωx=soc2ωx,
最小正周期是T=
=π.
∴ω=1.
所以f(x)=2sin(ωx+
π
4
)=2sin(x+
π
4
).
2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
⇒2kπ-
4
≤x≤2kπ+
π
4
  k∈Z.
上面四个选项中只有答案B符合要求.
故选:B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.