直线与方程 (13 18:7:26)

直线与方程 (13 18:7:26)

题目
直线与方程 (13 18:7:26)
直线l1:x+y+a=0,l2:x+ay+1=0和l3:ax+y+1=0能构成三角形,求a的取值范围
答案
直线L1:x+y+a=0 ,L2:x+ay+1=0 ,L3:ax+y+1=0能围成三角形.即每两条直线都相交,但三线不共点.
L1的斜率k1=-1,截距b1=-a
L2的斜率k2=-1/a,截距b2=-1/a
L3的斜率k3=-a,截距b3=-1
k1≠k2≠k3,a≠±1,
L1与L2的交点(-1-a,1)不在L3上
a(-1-a)+1+1≠0,a≠-2,a≠1
综上a的取值范围为a≠±1,a≠-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.