正方形ABCD,E和F为AB和AD中点,CE和BF交于G,求证:CD=GD

正方形ABCD,E和F为AB和AD中点,CE和BF交于G,求证:CD=GD

题目
正方形ABCD,E和F为AB和AD中点,CE和BF交于G,求证:CD=GD
答案
延长BF、CD交于点M
则可证△ABF≌△MDF
则有AB=DM=DC
又易得:BF⊥CG
则DG为直角三角形CGM斜边上的中线
所以DG=CM/2=CD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.